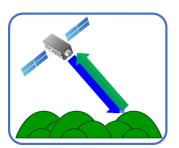
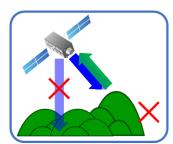
【地理教育・宇宙ビジネス向け】 無償で使える衛星画像の体験 ハンズオン講座(第13回)

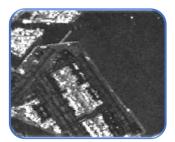
本資料は、RESTECの研修用サイト「リモセン研修ラボ」から PDF版をダウンロードいただけます。

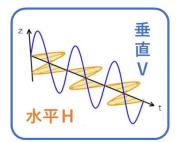
リモセン研修ラボ

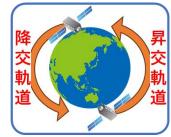


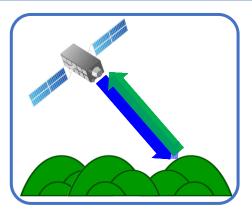
SARデータの可視化前に知っておいてもらいたい10のこと

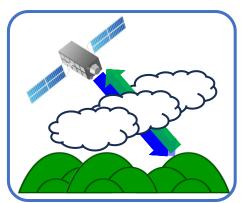








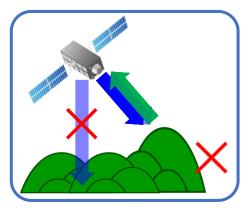




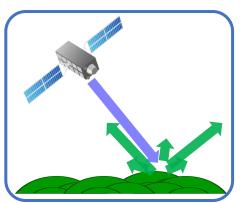
 SARは「サー」と読む。
Synthetic Aperture Radar の略 日本語だと「合成開口レーダー」

SARデータの可視化前に知っておいてもらいたい10のこと(2~4)

2. SAR衛星は、自ら電波(マイクロ波)を照射し、地表からの反射波を受信する。



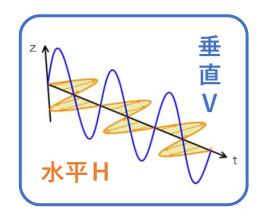
SAR衛星の電波は雲をすり抜ける。つまり天気が悪くても地表の観測が可能。



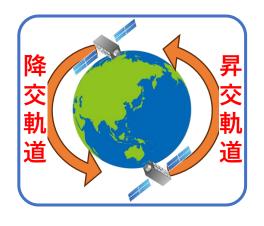
4. SAR衛星の電波は暗くても、照射・受信できる。つまり昼だけでなく夜でも観測が可能。


SARデータの可視化前に知っておいてもらいたい10のこと(5~7)

5. SAR衛星は斜め方向を観測する。 衛星の真下や、山の反対側は観 測できない。



6. 電波は地表で散乱し、衛星が受信する反射波はごく一部。画素値は0からマイナスで表す。



7. 画像では、反射が強いと白、弱いと黒く表示される。地表が平らだと反射が弱い(例:水面)

SARデータの可視化前に知っておいてもらいたい10のこと(8~9

8. 電波の向きは垂直のVerticalと 水平のHorizontalとで照射・受 信される。

- 9. 衛星の南北方向に地球を周回
 - ・北→南は降交軌道 (Descending)
 - ・南→北は昇交軌道 (Ascending)

SARデータの可視化前に知っておいてもらいたい10のこと(10

10. VEGAはGoogle Earth Engine (GEE) 上で動くアプリ。GEEには様々な衛 星データ*が載っている。

* 本日は欧州のSentinel-1衛星と日本のだいち2号 (ALOS-2) のデータを使用します。

参考リンク

■ VEGA

https://geerestec.users.earthengine.app/view/vega-restec

■ 紹介ページ(利用例や使い方と動画)

https://www.restec.or.jp/knowledge/vega/index.html

■ 利用マニュアル

https://rs-training.jp/from2022/wp-contt/uploads/2025/05/VEGA2.2 Manual Jp.pdf

それでは、VEGAでSARデータを可視化してみましょう!

本日のテーマ

- ① カンボジアの新空港
- ② 中国北京の大洪水
- ③ 大分市杉原のメガソーラー
- ④ 少雨によるダム湖の縮小
- ⑤ 五島列島沖の洋上風力発電
- ⑥ オホーツク海の海氷

#	操作メニュー	選択/入力
-	場所(Search Place)	
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	IW (Interferometric Wide Swath)
	2-2: 観測方向	昇交軌道
3	表示方法を選んでバンド指定	
	3-1: 単バンド (グレー)	VV Single Co-polarization
	3-2: 3バンド(赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-09-01
	終了日	2025-10-01
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

• IW:通常の観測

• EW:低分解能/広域

• SM:高分解能/狭域

選択しなくても可だが、 指定しておくと複数時期 の画像を比較しやすい。

8. 表示ボタンを押す

9月に観測された Sentinel-1衛星のデータ の中で、最も新しいデー タが表示されます。

#	操作メニュー	選択 / 入力
-	場所(Search Place)	
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	IW (Interferometric Wide Swath)
	2-2: 観測方向	昇交軌道
3	表示方法を選んでバンド指定	
	3-1: 単バンド (グレー)	選択しない(Chose a Polarization)
	3-2: 3バンド (赤緑青)	VV-VV-VH
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-09-01
	終了日	2025-10-01
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

RGB (赤緑青) の順番 の指定。この場合、

- 赤=VV
- 緑=VV
- 青=VH という意味。

8. 表示ボタンを押す

全体的に黄色の画像になります。

#	操作メニュー	選択/入力
-	場所(Search Place)	タクマウ・テチョ国際空港
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	IW (Interferometric Wide Swath)
	2-2: 観測方向	昇交軌道
3	表示方法を選んでバンド指定	
	3-1: 単バンド (グレー)	VV Single Co-polarization
	3-2: 3バンド (赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-09-01 (→2017-09-01に変更)
	終了日	2025-10-01 (→2017-10-01に変更)
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

8. 表示ボタンを押す

9月9日に開港した新空 港が表示されます。続い て、観測時期を2017年 に変更し、建設前の状況 を見てみましょう。

#	操作メニュー	選択/入力
-	場所(Search Place)	北京市 密雲県
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	IW (Interferometric Wide Swath)
	2-2: 観測方向	昇交軌道
3	表示方法を選んでバンド指定	
	3-1: 単バンド (グレー)	VV Single Co-polarization
	3-2: 3バンド (赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-07-19
	終了日	2025-08-02
6	データの合成方法	最新(合成しない) <mark>(→最古に変更)</mark>
7	雲マスク	チェックしない

入力前に、再読込か、 タブを複製し、VEGA の初期画面に戻ります。

8. 表示ボタンを押す

8月に発生した北京の洪 水。「最新」と「最古」 の画像を比べると、湖周 辺で浸水していることが わかります。

③ 大分市杉原のメガソーラー

VEGAの画面右側の操作パネルで以下の値を選択/入力し、データを可視化します。

#	操作メニュー	選択/入力
π		
-	場所(Search Place)	大分市杉原
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	IW (Interferometric Wide Swath)
	2-2: 観測方向	昇交軌道
3	表示方法を選んでバンド指定	
	3-1: 単バンド(グレー)	VV Single Co-polarization
	3-2: 3バンド (赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-09-01 (→2020-09-01に変更)
	終了日	2025-10-01 (→2020-10-01に変更)
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

入力前に、再読込か、 タブを複製し、VEGA の初期画面に戻ります。

8. 表示ボタンを押す

2025年の画像の後、 2020年の画像も表示し てみましょう。森林は灰 色、ソーラーパネルは黒 く表示されます。

④ 少雨によるダム湖の縮小

VEGAの画面右側の操作パネルで以下の値を選択/入力し、データを可視化します。

ш	는 /는 . / -	132-11-11-11-11-11-11-11-11-11-11-11-11-11
#	操作メニュー	選択/入力
-	場所(Search Place)	胆沢ダム
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	IW (Interferometric Wide Swath)
	2-2: 観測方向	昇交軌道
3	表示方法を選んでバンド指定	
	3-1: 単バンド (グレー)	VV Single Co-polarization
	3-2: 3バンド (赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-09-01 (→年や日を任意に変更)
	終了日	2025-09-10 (→年や日を任意に変更)
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

入力前に、再読込か、 タブを複製し、VEGA の初期画面に戻ります。

8. 表示ボタンを押す

岩手県の豊沢ダム、宮城 県の花山ダム、小田ダム、 山梨県の河口湖なども見 てみましょう。

⑤ 五島列島沖の洋上風力発電

VEGAの画面右側の操作パネルで以下の値を選択/入力し、データを可視化します。

#	操作メニュー	選択/入力
-	場所(Search Place)	五島市
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	IW (Interferometric Wide Swath)
	2-2: 観測方向	昇交軌道
3	表示方法を選んでバンド指定	
	3-1: 単バンド (グレー)	VV Single Co-polarization
	3-2: 3バンド (赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-09-01 (→2022-09-01に変更)
	終了日	2025-10-01 (→2022-10-01に変更)
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

入力前に、再読込か、 タブを複製し、VEGA の初期画面に戻ります。

8. 表示ボタンを押す

五島列島沖に洋上発電用 の風車が8基建設されて います。2022年の画像 と比べてみましょう。

⑥ オホーツク海の海氷

VEGAの画面右側の操作パネルで以下の値を選択/入力し、データを可視化します。

#	操作メニュー	選択 / 入力
-	場所(Search Place)	オホーツク海
1	データセットの選択	ALOS-2 ScanSAR
2	SARデータの観測条件	
	2-1: 観測モード	選択しない
	2-2: 観測方向	選択しない
3	表示方法を選んでバンド指定	
	3-1: 単バンド(グレー)	HH Single Co-polarization
	3-2: 3バンド (赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2025-01-01 (→年や日を任意に変更)
	終了日	2025-02-01 (→年や日を任意に変更)
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

入力前に、再読込か、 タブを複製し、VEGA の初期画面に戻ります。

8. 表示ボタンを押す

1月~3月の期間で任意 の日付けを入力し、画像 を表示してみましょう。 様々な模様の海氷が見ら れます。

#	操作メニュー	選択/入力
-	場所(Search Place)	大エチオピア再生ダム
1	データセットの選択	Sentinel-1 Cバンド SAR
2	SARデータの観測条件	
	2-1: 観測モード	選択しない
	2-2: 観測方向	選択しない
3	表示方法を選んでバンド指定	
	3-1: 単バンド (グレー)	VV Single Co-polarization
	3-2: 3バンド (赤緑青)	選択しない
4	画素値(反射率×10000)	
	最小値	-25
	最大値	0
5	データの観測時期	
	開始日	2024-08-01 (→2014-08-01に変更)
	終了日	2025-08-01 (→2015-08-01に変更)
6	データの合成方法	最新(合成しない)
7	雲マスク	チェックしない

入力前に、再読込か、 タブを複製し、VEGA の初期画面に戻ります。

8. 表示ボタンを押す

2025年に正式開業した エチオピアのルネサンス ダム。建設前の画像と比 較しましょう。 こちらの ポストも参照。

Sense Your Earth

training@restec.jp

